2020 Vol. 13 Issue 69

Korneev A.A., Lomakin D.I., Kurgansky A.V. Age-related features of memorizing a sequence of movements specified by a visual template

Full text in Russian: Корнеев А.А., Ломакин Д.И., Курганский А.В. Возрастные особенности запоминания последовательности движений, заданной зрительным образцом

Institute of developmental physiology, Russian Academy of Education, Moscow, Russia
Lomonosov Moscow State University, Moscow, Russia
Russian Academy of National Economy and Public Administration, Moscow, Russia

About author
Suggested citation

Here we report results of the study of memorization and retention of serial visuospatial stimuli at different ages: in children, adolescents and adults. The subjects were asked to reproduce broken lines – sequences of vertical and horizontal line segments. These lines were presented (1) as a static image and (2) as a dynamic object – a cursor moving along a broken line whose trajectory needed be remembered and reproduced. The complexity of the trajectories was set by their length and varied from 4 to 6 elements. The reproduction of the memorized pattern was induced by an audio signal.
We analyzed the total number of errors, as well as the temporal characteristics: reaction time (RT) and average time of the reproduction of a single element in the sequence (MT). Our results showed that the error rate decreased with age, which was typical mostly for the dynamic mode. Teenagers performed the task much more accurately compared to children, yet not as accurate as adults. RT increased markedly by adolescence and remained relatively high in adults. Adolescents and children showed comparable average MT that was higher than adults’.
The increase in accuracy of reproduction with age may reflect an improvement in the accuracy of sequence representation in working memory. The increase in latent time while preparing the motor response may be associated with a more detailed planning of the upcoming serial action. According to our data adolescents take intermediate position between children and adults: their representations of sequences are already of high quality and completeness whereas planning of upcoming serial action is comprehensive. However, they show insufficient motor control, which results in greater role of on-line programming in performing series of movements. The investigation of the role of the mode (static/dynamic) showed that the error rates in the two modes converge with age, whereas the temporal characteristics, on the contrary, become different.

Keywords: working memory, representation, serial order, early schoolchildren, adolescents.

Full text in Russian


Agam Y., Bullock D., Sekuler R. Imitating unfamiliar sequences of connected linear motions. Journal of Neurophysiology, 2005, 94(4), 2832–2843. doi: 10.1152/jn.00366.2005

Agam Y., Galperin H., Gold B.J., Sekuler R. Learning to imitate novel motion sequences. Journal of Vision, 2007, 7(5), 1–17. doi: 10.1167/7.5.1

Agam Y., Huang J., Sekuler R. Neural correlates of sequence encoding in visuomotor learning. Journal of neurophysiology, 2010, 103(3), 1418–1424. doi: 10.1152/jn.00662.2009

Badan M., Hauert A., Mounoud P. Sequential pointing in children and adults. Journal of Experimental Child Psychology, 2000, 75(1), 43–69. doi: 10.1006/jecp.1999.2522

Baddeley A.D., Hitch G.J., Allen R.J. From short-term store to multicomponent working memory: The role of the modal model. Memory & cognition, 2019, 47(4), 575–588. doi: 10.3758/s13421-018-0878-5

Baddeley A. Working memory: Theories, models, and controversies. Annual review of psychology, 2012, 63(3), 1–29. doi: 10.1146/annurev-psych-120710-100422

Baddeley A.D., Hitch G.J. Working memory. G.H. Bower (Ed.), The psychology of learning and motivation, 1974, 8, 47–89. doi: 10.1016/S0079-7421(08)60452-1

Beteleva T.G., Nachinskaya R.I., Kurgansky A.V., Farber D.A. Brain organization of working memory in primary school age. Brain mechanisms of development of cognitive activity in preschool and primary school age. Moscow-Voronej: MGPSU, 2014, 237–262.

Bezrukikh M.M., Kiselev M.F., Komarov G.D., Kozlov A.P., Kurneshova L.E., Land S.B., Noskin L.A., Noskin V.A., Pivovarov V.V. Age-related features of the organization of motor activity in 6-to 16-year-old children. Human Physiology, 2000, 26(3), 337–344. doi: 10.1007/BF02760196

Bisley J.W., Zaksas D., Droll J.A., Pasternak T. Activity of neurons in cortical area MT during a memory for motion task. Journal of neurophysiology, 2004, 91(1), 286–300. doi: 10.1152/jn.00870.2003

Burggraaf R., Frens M.A., Hooge I.T.C., van der Geest J.N. Performance on tasks of visuospatial memory and ability: A cross-sectional study in 330 adolescents aged 11 to 20. Applied Neuropsychology: Child, 2018, 7(2), 129–142. doi:10.1080/21622965.2016.126

Burnett Heyes S., Zokaei N., van der Staaij I., Bays P.M., Husain M. Development of visual working memory precision in childhood. Developmental science, 2012, 15 (4), 528–539. doi: 10.1111/j.1467-7687.2012.01148.x

Chai W.J., Abd Hamid A.I., Abdullah J.M. Working memory from the psychological and neurosciences perspectives: A review. Frontiers in psychology, 2018, 9, 401. doi: 10.3389/fpsyg.2018.00401

Diamond A. The early development of executive functions. Lifespan cognition: Mechanisms of change, New York, NY, US: Oxford University Press, 2006, 70–95.

Gathercole S.E., Pickering S.J., Ambridge B., Wearing H. The structure of working memory from 4 to 15 years of age. Developmental psychology, 2004, 40(2), 177 –190. doi: 10.1037/0012-1649.40.2.177

Ginsburg V., Archambeau K., van Dijck J.-P., Chetail F., Gevers W. Coding of serial order in verbal, visual and spatial working memory. Journal of Experimental Psychology: General, 2017, 146(5), 632–650. doi: 10.1037/xge0000278

Hitch G.J., Woodin M.E., Baker S. Visual and phonological components of working memory in children. Memory & Cognition, 1989, 17(2), 175–185. doi: 10.3758/BF03197067

Hurlstone M.J., Hitch G.J., Baddeley A.D. Memory for serial order across domains: An overview of the literature and directions for future research. Psychological bulletin, 2014, 140(2), 339–373. doi: 10.1037/a0034221

Hurlstone M.J., Hitch G.J. How is the serial order of a spatial sequence represented? Insights from transposition latencies. Journal of experimental psychology: learning, memory, and cognition, 2015, 41(2), 295–324. doi: 10.1037/a0038223

Inaba N., Shinomoto S., Yamane S., Takemura A., Kawano K. MST neurons code for visual motion in space independent of pursuit eye movements. Journal of Neurophysiology, 2007, 97(5), 3473–3483. doi: 10.1152/jn.01054.2006

Isbell E., Fukuda K., Neville H.J., Vogel E.K. Visual working memory continues to develop through adolescence. Frontiers in psychology, 2015, 6, 696. doi: 10.3389/fpsyg.2015.00696

Kang M.S., Hong S.W., Blake R., Woodman G.F. Visual working memory contaminates perception. Psychonomic Bulletin & Review, 2011, 18(5), 860–869. doi: 10.3758/s13423-011-0126-5

Kiselev S., Espy K.A., Sheffield T. Age-related differences in reaction time task performance in young children. Journal of Experimental Child Psychology, 2009, 102(2), 150–166.

Korneev A.A., Kurganskii A.V. Internal representation of movement sequences on reproduction of static drawings and the trajectories of moving objects. Neuroscience and Behavioral Physiology, 2014, 44(8), 892–901. doi: 10.1007/s11055-014-9998-y

Lehnert G., Zimmer H.D. Modality and domain specific components in auditory and visual working memory tasks. Cognitive processing, 2008, 9(1), 53–61. doi: 10.1007/s10339-007-0187-6

Leon-Carrion J., García-Orza J., Pérez-Santamaría F.J. Development of the inhibitory component of the executive functions in children and adolescents. International Journal of Neuroscience, 2004, 114(10), 1291–1311. doi: 10.1080/00207450490476066

Logie R.H. Visuo-spatial working memory, Psychology Press, 2014.

Luciana M., Conklin H.M., Hooper J., Yarger R.S. The development of nonverbal working memory and executive control processes in adolescents. Child development, 2005, 76(3), 697–712. doi: 10.1111/j.1467-8624.2005.00872.x

Luciana M., Nelson A. Assessment of neuropsychological function through use of the Cambridge Neuropsychological Testing Automated Battery: performance in 4-to 12-year-old children. Developmental neuropsychology, 2002, 22(3), 595–624. doi: 10.1207/S15326942DN2203_3

Mammarella I.C., Pazzaglia F., Cornoldi C. Evidence for different components in children's visuospatial working memory. British Journal of Developmental Psychology, 2008, 26(3), 337–355. doi: 10.1348/026151007X236061

Nee D.E., D’Esposito M. The representational basis of working memory. Behavioral Neuroscience of Learning and Memory, Springer, Cham, 2016, 213–230. doi: 10.1007/7854_2016_456

Nelson A., Monk S., Lin J., Carver L.J., Thomas K.M., Truwit L. Functional neuroanatomy of spatial working memory in children. Developmental psychology, 2000, 36(1), 109. doi: 10.1037/0012-1649.36.1.109

Pasternak T., Zaksas D. Stimulus specificity and temporal dynamics of working memory for visual motion. Journal of Neurophysiology, 2003, 90(4), 2757–2762. doi: 10.1152/jn.00422.2003

Pickering S.J., Gathercole S.E., Hall M., Lloyd S.A. Development of memory for pattern and path: Further evidence for the fractionation of visuo-spatial memory. The Quarterly Journal of Experimental Psychology Section A, 2001, 54(2), 397–420. doi: 10.1080/713755973

Rhodes B.J., Bullock D., Verwey W.B., Averbeck B.B., Page M.P. Learning and production of movement sequences: Behavioral, neurophysiological, and modeling perspectives. Human movement science, 2004, 23(5), 699–746. doi: 10.1016/j.humov.2004.10.008

Roberts K.L., Strait J.A.E., Decker S.L. Developmental Trajectories of Verbal, Static Visual-Spatial, and Dynamic Visual-Spatial Working Memory. Contemporary School Psychology, 2018, 22(4), 458–467. doi: 10.1007/s40688-018-0176-z

Soemer A., Saito S. Domain-specific processing in short-term serial order memory. Journal of Memory and Language, 2016, 88, 1–17. doi: 10.1016/j.jml.2015.12.003

Spronk M., Vogel E.K., Jonkman L.M. Electrophysiological evidence for immature processing capacity and filtering in visuospatial working memory in adolescents. PLoS One, 2012, 7(8), e42262. doi: 10.1371/journal.pone.0042262

Thomas K.M., King S.W., Franzen P.L., Welsh T.F., Berkowitz A.L., Noll D.C., Birmaher V., Casey B.J. A developmental functional MRI study of spatial working memory. Neuroimage, 1999, 10(3), 327–338.a. doi: 10.1006/nimg.1999.0466

Vergara J., Rivera N., Rossi-Pool R., Romo R. A neural parametric code for storing information of more than one sensory modality in working memory. Neuron, 2016, 89(1), 54–62. doi: 10.1006/nimg.1999.0466

Verwey W.B., Shea H., Wright D.L. A cognitive framework for explaining serial processing and sequence execution strategies. Psychonomic bulletin & review, 2015, 22(1), 54–77. doi: 10.3758/s13423-014-0773-4

Wing A.M. Motor control: Mechanisms of motor equivalence in handwriting. Current biology, 2000, 10(6), R245-R248. doi: 10.1016/S0960-9822(00)00375-4

Received 14 March 2020. Date of publication: 07 April 2020.

About author

Korneev Aleksei A. PhD in Psychology, Senior Research Associate, Laboratory of Neuropsychology, Faculty of Psychology, Lomonosov Moscow State University, ul. Mokhovaya, 11-9, 125009 Moscow, Russia; Senior Research Associate, Laboratory of Neurophysiology of Cognitive Processes, Institute of Developmental Physiology, Russian Academy of Education, ul. Pogodinskaya, 8-2, 119121 Moscow, Russia.
E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Lomakin Dmitrii I. Research Associate, Laboratory of Neurophysiology of Cognitive Processes, Institute of Developmental Physiology, Russian Academy of Education, ul. Pogodinskaya, 8-2, 119121 Moscow, Russia.
E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Kurgansky Andrei V. PhD in Biology, Leading Research Associate, Laboratory of Neurophysiology of Cognitive Processes, Institute of Developmental Physiology, Russian Academy of Education, ul. Pogodinskaya, 8-2, 119121 Moscow, Russia. Cognitive Research Lab, Psychology Department, Institute for Social Sciences, Russian Academy of National Economy and Public Administration, prospekt Vernadskogo, 82-84, 119571 Moscow, Russia.
E-mail: Этот адрес электронной почты защищен от спам-ботов. У вас должен быть включен JavaScript для просмотра.

Suggested citation

Korneev A.A., Lomakin D.I., Kurgansky A.V. Age-related features of memorizing a sequence of movements specified by a visual template. Psikhologicheskie Issledovaniya, 2020, Vol. 13, No. 69, p. 3. http://psystudy.ru (in Russian, abstr. in English).

Permanent URL: http://psystudy.ru/index.php/eng/2020v13n69e/1733-korneev69e.html

Back to top >>